About this project

S3-ALU

Reducing emissions in car production: with digital twins and recycled aluminum

Markets:

Material: Aluminium

This project is funded by the Technology Transfer Programme Leichtbau (TTP LB) of the Federal Ministry of Economics and Climate Action.

Technology Transfer Program Leichtbau

About this project

Context

The automotive industry is facing the challenge of making its production more climate-friendly. Aluminum in particular contributes significantly to the CO2 footprint of cars due to its energyintensive manufacturing process. In order to reduce emissions, recycled aluminum - so-called secondary aluminum - will be increasingly used in the future. Compared to primary aluminum - i.e. aluminum produced directly from the raw material for the first time - significantly less energy is required in the production of secondary aluminum. The researchers in the S3-ALU project want to exploit this savings potential.

Purpose

The aim of the project participants is to replace primary aluminum in automotive production with secondary aluminum without losing the advantageous properties of the material. They want to use simulations to evaluate the quality and sustainability of the recycled materials. The use of secondary aluminum is intended to significantly reduce the CO2 footprint per vehicle and promote sustainable lightweight construction.

Procedure

The researchers are developing and using a digital twin to model different compositions of recycled aluminum. The virtual representation depicts the properties of the recycled aluminum and evaluates the suitability of the available aluminum scrap of different qualities for material production. Thanks to the digital twin, the project partners can test different material variants in a time and resource-saving manner without having to carry out numerous physical experiments. This allows them to determine how high the proportion of recycled aluminum can be without compromising the material quality. In addition, the components can also be evaluated in terms of their carbon footprint.

About this proje	ct	
22 pa		
Funding duration:		
Project partner:		
Funding sign:	03LB3091	Funding amount: EUR 1.9 million
Further websites		ound.de/foekat/jsp/SucheAction.do? &fkz=03LB3091A - S3-Alu in the federal funding catalog

Project coordination

Contact:

Mr Dr. Daniel Höche

+49 04152 87-1914

daniel.hoeche@hereon.de

Organisation:

Helmholtz Centre hereon GmbH

Max-Planck-Str. 1 21502 Geesthacht Schleswig-Holstein Germany

☑ hereon.de

Lightweighting classification		
	Realisation	
Offer		
Products Parts and components, Semi-finished parts	\checkmark	
Services & consulting		

	Realisation
ield of technology	
Design & layout	
Functional integration Sensor technology	\checkmark
Measuring and testing technology Materials analysis	\checkmark
Modelling and simulation Optimisation, Processes, Materials, Others (Digital twin)	\checkmark
Plant construction & automation	
Recycling technologies Recycling	\checkmark
Nanufacturing process	
Additive manufacturing	
Coating (surface engineering)	
Fibre composite technology	
Forming	
Joining	
Material property alteration	
Primary forming Casting	\checkmark
Processing and separating	

	Realisation
Material	
Biogenic materials	
Cellular materials (foam materials)	
Composites	
Fibres	
Functional materials	
Metals Aluminium	\checkmark
Plastics	
Structural ceramics	
(Technical) textiles	