<section-header><section-header>

I-Detekt

Automatically detect damage: intelligent battery protection system for electric cars

Markets:

Material:

Laminates

This project is funded by the Technology Transfer Programme Leichtbau (TTP LB) of the Federal Ministry of Economics and Climate Action.

Technology Transfer Program Leichtbau

About this project

Context

For the energy transition to succeed in the long term, it is crucial to gradually electrify the transport sector. One of the biggest obstacles is currently the comparatively short range of electric vehicles. Lightweight construction offers considerable potential here, as it can help to reduce the moving masses and thus increase the vehicle range.

The battery protection structure of an electric vehicle is located underneath the traction battery and protects it from mechanical loads such as stones thrown up from the road. Up to now, it has usually been made of thick-walled aluminium, steel or titanium and is therefore heavy and expensive.

In addition, there is currently no way to automatically determine the extent of damage after a mechanical load without removing components, meaning that a visit to the workshop and possibly a replacement of the entire structure may be necessary even on mere suspicion.

Purpose

In the I-Detekt project, the project partners want to develop an intelligent battery protection system for electric vehicles that automatically recognises damage to the battery protection structure, but also to the battery itself.

The project team wants to develop a battery protection structure made of a glass fibre-reinforced plastic with integrated sensors. The latter should automatically recognise and classify relevant damage. Thanks to the lower component weight, resources can be saved both during production and throughout the entire utilisation cycle. The integrated sensor technology also leads to further significant savings in material resources, as the battery protection and the battery itself only need to be replaced if there is actually a defect.

About this project

Procedure

The team wants to test and verify the structures both virtually - using digital twins - and experimentally in order to enable subsequent industrial series production. This is made possible by the broad technical composition of the consortium across the entire supply chain. In the future, the intelligent battery protection system should also be transferable to other sectors and applications, such as rail vehicles or mechanical and plant engineering.

The project partners anticipate potential greenhouse gas savings of up to 440,000 tonnes of CO2 equivalent. This calculation is based on the VW Group's annual production of electric vehicles from 2025 onwards, with an average mileage of 200,000 kilometres.

The research result shows that the detection of damage levels via the underbody protection system is possible in principle. The technical challenges such as component complexity and differentiation of the damage stages now need to be clarified in more detail, as do the potential economic and ecological issues.

Funding duration:

Funding sign:	03LB2001	Funding amount:	EUR 2 million
Further websites	☑plattform-forel.de/i-detekt/ ☑foerderportal.bund.de/foekat/jsp/SucheAction.do? actionMode=view&fkz=03LB2001A - I-Detekt in the federal funding catalogue		

Project coordination

Contact:

Mr Dr. Philipp Kellner

+49 0170/911-8027

philipp.kellner@porsche.de

Organisation:

Dr Ing. h.c. F. Porsche AG

Porscheplatz 1 70435 Stuttgart Baden-Württemberg Germany

☑ www.porsche.com/germany/

English (EN){{ Projektpartner }}

leichtbauatlas.de

PORSCHE

_ightweighting classification		
	Realisation	
Offer		
Products Parts and components, Semi-finished parts	\checkmark	
Services & consulting		
Field of technology		
Design & layout Lightweight design, Hybrid structures	\checkmark	
Functional integration Sensor technology	\checkmark	
Measuring and testing technology Component and part analysis, Non-destructive analysis	\checkmark	
Modelling and simulation Life-cycle analysis, Reliability validation	\checkmark	
Plant construction & automation Automation technology, Handling technology	\checkmark	
Recycling technologies		
Manufacturing process		
Additive manufacturing		
Coating (surface engineering)		
Fibre composite technology		
Forming Compression moulding	\checkmark	
Joining		
Material property alteration		
Primary forming		
Processing and separating		
Textile technology		

ightweighting classification		
	Realisation	
Material		
Biogenic materials		
Cellular materials (foam materials)		
Composites Laminates	\checkmark	
Fibres		
Functional materials		
Metals		
Plastics		
Structural ceramics		
(Technical) textiles		