About this project

RESOLVE

Processing fibres efficiently: sustainable seating systems for vehicles

Markets:

Material:Glass fibres, Others (Polyamide fibres), Thermoplastics, Laid webs,
Woven fabrics, Glass-fiber reinforced plastics (GFRP)

This project is funded by the Technology Transfer Programme Leichtbau (TTP LB) of the Federal Ministry of Economics and Climate Action.

Technology Transfer Program Leichtbau

About this project

Context

Continuous fibre-reinforced thermoplastic fibre composites are among the most innovative materials in lightweight construction. Their exceptional material properties, such as high strength and low weight, offer enormous potential for a climate-friendly industry. However, their industrial use has so far been limited, as high material costs and cutting rates make widespread use difficult. This means that considerable opportunities for conserving resources and reducing CO2-emissions remain untapped.

Purpose

The aim of RESOLVE is to overcome these hurdles through new technologies and optimised manufacturing processes. The researchers have optimised the fibre orientation of the continuous fibre-reinforced thermoplastic fibre composite materials so that they are ideally prefabricated for specific loads. Specifically, they have designed a modular seating system for trams to demonstrate the potential of these materials. These seats are particularly light, stable and resource-efficient. The project also aims to develop new bionic design approaches that can be used in various industries such as automotive, aviation and rail transport. This will enable a broad industrial application.

Procedure

The researchers are using what is known as effiLOAD technology. This makes it possible to place fibre materials in a "roll-to-roll" process in such a way that they follow the load paths precisely. As a result, significantly less material is lost, while efficiency and product quality increase at the same time. The project team is further refining this technology and combining it with bionic principles. The focus is on a complete process chain, from the manufacture of semi-finished products to component production and quality assurance. The tram seat concept serves as an application example to demonstrate the potential of the technology in a real product.

C					
Funding duration:					
Funding sign:	03LB3002	Funding amount:	EUR 1.1 million		
Further websites	☑foerderportal.bund.de/foekat/jsp/SucheAction.do? actionMode=view&fkz=03LB3002A - RESOLVE in the federal funding catalogue				

Project coordination

Contact:

Mr Markus Heinich

+49 371 66653127

markus.heinich@hoermann-gruppe.com

Organisation:

Hörmann Vehicle Engineering GmbH

Aue 23 - 27 09112 Chemnitz Saxony Germany

☑ www.hoermann-engineering.de

English (EN){{ Projektpartner }}

ightweighting classification		
	Realisation	
Offer		
Products Parts and components, Software & databases, Systems and end products, Tools and moulds	\checkmark	
Services & consulting Consulting, Engineering, Prototyping, Simulation	\checkmark	

ightweight design, Lightweight construction	
Design & layout Lightweight design, Lightweight construction	
concepts	\checkmark
Functional integration Others (Load path integration)	\checkmark
Measuring and testing technology Component and part analysis, Materials analysis	\checkmark
Modelling and simulation Crash behaviour, Loads & stress	\checkmark
Plant construction & automation Plant construction	\checkmark
Recycling technologies	
Manufacturing process	
Additive manufacturing	
Coating (surface engineering)	
Fibre composite technology	
Forming Compression moulding	\checkmark
Joining	
Material property alteration Heat treatment	\checkmark
Primary forming	
Processing and separating	

_ightweighting classification			
	Realisation		
Material			
Biogenic materials			
Cellular materials (foam materials)			
Composites Glass-fiber reinforced plastics (GFRP)	\checkmark		
Fibres Glass fibres, Others (Polyamide fibres)	\checkmark		
Functional materials			
Metals			
Plastics Thermoplastics	\checkmark		
Structural ceramics			
(Technical) textiles Laid webs, Woven fabrics	\checkmark		