
About this project

GePart

Making particle foams more sustainable: Process energy-efficiently, enable recycling

Markets:

Material: Bioplastics, Thermoplastics, Aluminium, Closed-pore, Open-pore

This project is funded by the Technology Transfer Programme Leichtbau (TTP LB) of the Federal Ministry of Economics and Energy.

Technology Transfer Program Leichtbau

About this project

Context

Particle foams such as expanded polypropylene (EPP) are key materials for lightweight construction. In the automotive industry in particular, they help to reduce vehicle weight and thus lower fuel consumption and CO2 emissions. However, traditional production using hot water vapour is very energy-intensive. Only around one per cent of the energy is used for welding the particles, the rest is lost unused.

At the same time, the recycling of EPP material is not yet sufficiently realised. At the end of its useful life, the material is usually thermally utilised. A genuine circular economy is not yet possible, as the processing of recycled material impairs the quality. This is where the GePart research project comes in: The team wants to improve processing and close the material cycle of EPP sustainably.

Purpose

The GePart project team is pursuing two key objectives: developing an energy-efficient processing technology and increasing the proportion of recycled material. With the help of radio frequency (RF) technology, the researchers want to weld EPP without water vapour in the future. This saves up to 90 per cent energy, as the heat is generated directly inside the foam beads. At the same time, the scientists want to increase the proportion of recycled EPP material to between 50 and 70 per cent. To achieve this, the project team is further developing the recycling processes and precisely analysing the material properties. The aim is to optimise the quality of recycled EPP so that it meets the requirements for series production.

Procedure

In order to industrialise RF technology for EPP, the researchers are further developing the process at laboratory level. In doing so, they are able to confirm the advantages of RF technology over vapourbased processing: uniform heating, minimal energy loss and the use of cost-effective plastic tools. At the same time, the team is developing new recycling strategies to reprocess EPP material to a high standard after its utilisation phase.

The scientists are analysing the degradation behaviour of the material along the cycle and optimising the processes for removing impurities. Comprehensive tests have shown that a recyclate content of up to 70 per cent is realistic without compromising the quality of the components. An accompanying life cycle assessment confirms the successes: 15 per cent energy savings in production and 25 per cent less CO2 emissions through the use of recycled material.

About this project	:t		
Funding duration:			
Funding sign:	03LB2000	Funding amount:	EUR 1.8 million
Further websites	⊠foerderportal.b actionMode=view ⊠plattform-fore		on.do?

Project coordination

Contact:

Mr Dipl.-Ing. Thomas Doll

+49 7802 806-746

tdoll@ruch.de

Organisation:

RUCH NOVAPLAST GmbH

Appenweierer Strasse 77704 Oberkirch Baden-Württemberg Germany

☑ www.ruch.de

	Realisation
ffer	
Products Parts and components, Semi-finished parts	\checkmark
Services & consulting Consulting, Testing and trials, Engineering, Prototyping, Technology transfer	\checkmark
ield of technology	
Design & layout Hybrid structures, Lightweight construction concepts, Lightweight material construction	\checkmark
Functional integration Actuator technology, Sensor technology	\checkmark
Measuring and testing technology Component and part analysis, Visual analysis (e.g. microscopy, metallography), System analysis, Environmental simulation, Materials analysis, Destructive analysis, Non-destructive analysis	~
Modelling and simulation Crash behaviour, Life-cycle analysis, Optimisation, Structural mechanics, Materials	\checkmark
Plant construction & automation	

	Realisation
Aanufacturing process	
Additive manufacturing 3D printing	\checkmark
Coating (surface engineering)	
Fibre composite technology	
Forming	
Joining Adhesive bonding, Riveting, Welding	\checkmark
Material property alteration	
Primary forming Others	\checkmark
Processing and separating Drilling, Shearing/punching, Cutting	\checkmark
Textile technology	

	Realisation
/ aterial	
Biogenic materials Bioplastics	\checkmark
Cellular materials (foam materials) Closed-pore, Open-pore	\checkmark
Composites	
Fibres	
Functional materials	
Metals Aluminium	\checkmark
Plastics Thermoplastics	\checkmark
Structural ceramics	