
About this project

OptUm-MagNa

Magnesium materials: Enabling forming with nanoparticles

Markets:

₩★

Material:Magnesium, Others (AM60 magnesium alloy (Mg-6Al) | nanocomposite
AM60-xCa-yAlN), Nanocomposites, Particulate composites

This project is funded by the Technology Transfer Programme Leichtbau (TTP LB) of the Federal Ministry of Economics and Energy.

Technology Transfer Program Leichtbau

About this project

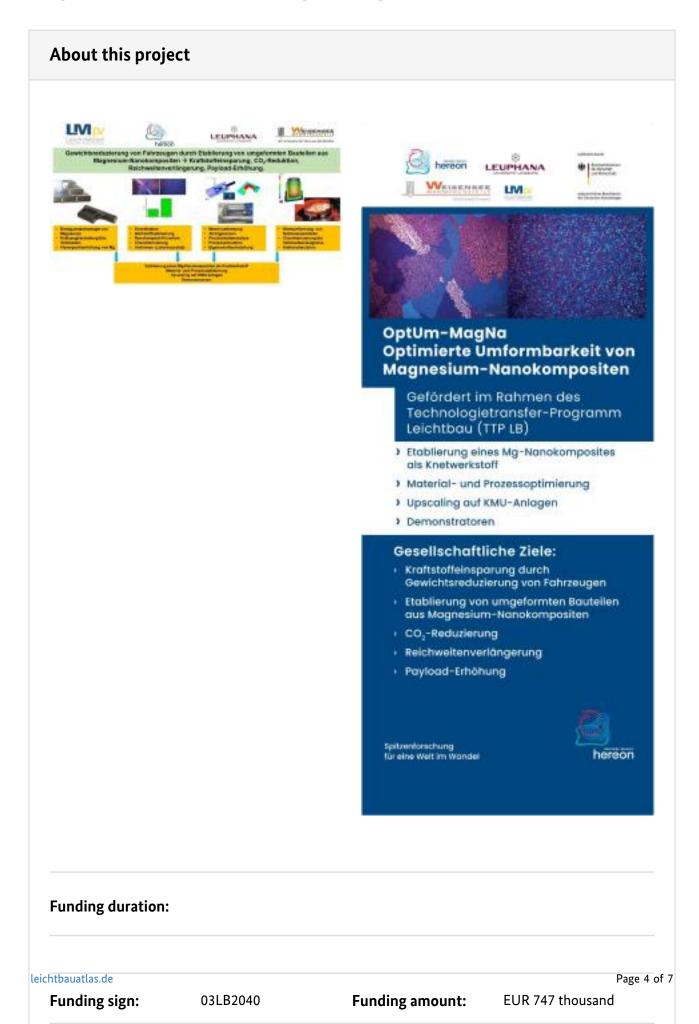
Context

Magnesium has the lowest density of all metallic construction materials and therefore has great potential for lightweight construction. Its modulus of elasticity, i.e. the ratio of stiffness to weight, is significantly higher than that of other lightweight metals such as aluminium. This makes magnesium particularly suitable for applications in the automotive and aerospace industries, where every kilogramme of weight counts.

Nevertheless, its use has so far been limited: Conventional magnesium alloys can hardly be formed, as their hexagonal lattice structure only allows low ductility - i.e. plastic deformability. Formable variants have not yet achieved the required strength and have poor processing properties. This prevents manufacturers from using magnesium in load-bearing lightweight components. The researchers in the OptUm-MagNa project want to change this.

Purpose

The project team wants to qualify magnesium alloys for forming technology - i.e. not just casting, but also forging or extruding (extrusion). The researchers are using so-called nanocomposites for this purpose: They add ceramic nanoparticles in the size range below 100 nanometres to the magnesium. These particles cause extreme grain refinement in the structure of the metal. This increases strength, improves ductility and significantly increases formability.


The result is a material that for the first time offers a combination of low weight, high strength and good formability. In addition, flammability is reduced - an important aspect especially for aviation. Instead of using expensive and critical rare earths, the scientists use calcium or calcium oxide as an alloy additive to reduce the fire behaviour to the level of molten aluminium.

About this project

Procedure

Firstly, the researchers investigate the optimum composition of the nanocomposite. They vary the particle size and concentration and analyse their influence on the microstructure and mechanical properties. The moulded semi-finished product is then forged, extruded or extruded in the laboratory. In microstructure analyses during the forming process, the team determines the relationships between forming parameters, grain structure and component properties. The aim is to specifically adjust the material properties via the forming conditions.

At the same time, the researchers are developing processes to enable the material to be processed under real industrial conditions - in an energy-efficient and resource-saving manner. Finally, they are comparing prototype components made from the new magnesium nanocomposite with conventional aluminium parts. The focus here is on weight, rigidity, strength and flammability. Finally, an economic assessment will show the potential for industrial applications - including beyond mobility, for example in medical technology.

Project coordination

Contact:

Mr Dr. Hajo Dieringa

+49 4152 87-1955

hajo.dieringa@hereon.de

Organisation:

Helmholtz Centre hereon GmbH

Max-Planck-Str. 1 21502 Geesthacht Schleswig-Holstein Germany

☑ hereon.de

English (EN){{ Projektpartner }}

Leuphana Universität Lüneburg, Institut für Produkt- und Prozessinnovation (PPI)

ightweighting classification	
	Realisation
Offer	
Products Parts and components, Semi-finished parts, Materials, Tools and moulds, Others (Raw material for forging process)	\checkmark
Services & consulting Training, Prototyping, Validation, Simulation, Technology transfer	\checkmark

	Realisation
Field of technology	
Design & layout Lightweight material construction	~
Functional integration	
Measuring and testing technology Materials analysis	\checkmark
Modelling and simulation Processes, Others (Simulation of the forming of magnesium nanocomposites)	\checkmark
Plant construction & automation	
Recycling technologies	
Manufacturing process	
Additive manufacturing	
Coating (surface engineering)	
Fibre composite technology	
Forming Impact extrusion, Forging, Extrusion moulding	\checkmark
Joining	
Material property alteration Others (Addition of AlN nanoparticles, which are introduced into an AM60 melt with the aid of ultrasound-assisted bag casting, leads to significant grain refinement)	\checkmark
Primary forming Others (High-shearing process ultrasonic- assisted casting discontinuous continuous casting or belt casting)	\checkmark
Processing and separating Sawing, Others (Deburring / pickling)	\checkmark
Textile technology	

	Realisation
Material	
Biogenic materials	
Cellular materials (foam materials)	
Composites Nanocomposites, Particulate composites	\checkmark
Fibres	
Functional materials	
Metals Magnesium, Others (AM60 magnesium alloy (Mg-6Al) nanocomposite AM60-xCa-yAlN)	\checkmark
Plastics	
Structural ceramics	
(Technical) textiles	