

CO# balance, resource efficiency, recycling: evaluating lightweight plastic components

About this project

SuLiCo

CO# balance, resource efficiency, recycling: evaluating lightweight plastic components

Markets:

Material: Bioplastics, Biocomposites, Glass fibres, Carbon fibres, Natural fibres, Thermoset plastics, Thermoplastics, Glass-fiber reinforced plastics (GFRP), Carbon-fiber reinforced plastics (CFRP), Natural fibre reinforced plastics (NFRP)

CO₂ balance, resource efficiency, recycling: evaluating lightweight plastic components

About this project

This project is funded by the Technology Transfer Programme Leichtbau (TTP LB) of the Federal Ministry of Economics and Energy.

[Technology Transfer Program Leichtbau](#)

Context

Lightweight plastic components reduce weight and energy requirements, for example in vehicles or technical devices. At the same time, new material formulations, fibre composites or joining techniques can increase environmental impacts in other phases of the product life cycle. In practice, companies often only assess ecological effects after construction or only for individual criteria such as CO₂ emissions. Conflicting objectives between weight, recyclability, use of resources and function thus remain undetected.

Particularly in early development phases, there is a lack of easily accessible, comparable data on the entire life cycle of a component - from raw material extraction to utilisation and recycling. Existing software solutions either only partially map these relationships or are aimed at specialised users. This means that lightweight plastic construction lacks a tool that systematically integrates ecological and resource-related aspects into design decisions and makes different lightweight construction variants transparently comparable.

Purpose

In the SuLiCo project, the research team is developing a database-supported software tool that evaluates the environmental and resource impact of lightweight plastic components as early as the design and construction phase. The application will take the entire life cycle into account and calculate and compare parameters such as the carbon footprint, other environmental impacts, energy and resource consumption and recyclability.

The aim is to visualise conflicting objectives between lightweight construction, climate impact and recyclability and to enable fact-based decisions. The tool serves as a multi-criteria decision-making aid for developers and is intended to ensure the selection of suitable materials, construction methods and recycling strategies. A prototype is being trialled in an application-oriented manner to ensure transferability to different lightweight construction products.

CO₂ balance, resource efficiency, recycling: evaluating lightweight plastic components

About this project

Procedure

Following a requirements analysis in collaboration with potential users from industry, the researchers are developing a consistent database of material, process and environmental data that maps the entire life cycle of lightweight plastic components. Building on this, they are developing evaluation methods that combine ecological indicators, resource efficiency and recycling aspects in a common structure. The researchers are transferring these methods into a software concept that allows a comparative assessment of different design variants.

The team then implements a functional prototype and applies it to selected use cases. The participants use tests to check the comprehensibility and significance of the results. In addition, the team prepares the results for transfer so that the tool can be used in industrial practice and disseminated further.

CO₂ balance, resource efficiency, recycling: evaluating lightweight plastic components

About this project

Funding duration:

Funding sign: 03LB3084 **Funding amount:** EUR 550 thousand

Final report

Further websites foerderportal.bund.de/foekat/jsp/SucheAction.do?actionMode=view&fkz=03LB3084A - SuLiCo in the federal funding catalogue

CO# balance, resource efficiency, recycling: evaluating lightweight plastic components

Project coordination

Contact:

Mr Dr. rer. nat. Hermann Achenbach

+49 0931 4104-266

h.achenbach@skz.de

Organisation:

SKZ - The Plastics Centre

Friedrich-Bergius-Ring 22
97076 Würzburg
Bavaria
Germany

www.skz.de

English (EN){{ Projektpartner }}

brands & values
sustainability consultants

Lightweighting classification

Realisation

Offer

Products

Software & databases

Services & consulting

Training, Consulting, Funding

CO# balance, resource efficiency, recycling: evaluating lightweight plastic components

Lightweighting classification	
	Realisation
Field of technology	
<i>Design & layout</i>	
<i>Functional integration</i>	
Measuring and testing technology	✓
<i>Environmental simulation</i>	
Modelling and simulation	✓
<i>Life-cycle analysis, Optimisation</i>	
<i>Plant construction & automation</i>	
<i>Recycling technologies</i>	
Manufacturing process	
<i>Additive manufacturing</i>	
<i>Coating (surface engineering)</i>	
<i>Fibre composite technology</i>	
<i>Forming</i>	
<i>Joining</i>	
<i>Material property alteration</i>	
<i>Primary forming</i>	
<i>Processing and separating</i>	
<i>Textile technology</i>	

CO₂ balance, resource efficiency, recycling: evaluating lightweight plastic components

Lightweighting classification	
Material	Realisation
Biogenic materials Bioplastics, Biocomposites	✓
<i>Cellular materials (foam materials)</i>	
Composites Glass-fiber reinforced plastics (GFRP), Carbon-fiber reinforced plastics (CFRP), Natural fibre reinforced plastics (NFRP)	✓
Fibres Glass fibres, Carbon fibres, Natural fibres	✓
<i>Functional materials</i>	
<i>Metals</i>	
Plastics Thermoset plastics, Thermoplastics	✓
<i>Structural ceramics</i>	
<i>(Technical) textiles</i>	