

For electric drives: Designing load-optimised and resource-efficient high-speed gearboxes

About this project

Light4Speed

For electric drives: Designing load-optimised and resource-efficient high-speed gearboxes

For electric drives: Designing load-optimised and resource-efficient high-speed gearboxes

About this project

Markets:

Material:

Steel

This project is funded by the Technology Transfer Programme Leichtbau (TTP LB) of the Federal Ministry of Economics and Energy.

[Technology Transfer Program Leichtbau](#)

Context

The transition to electromobility is also changing the demands on the drivetrain - and therefore on transmission technology. Although electric vehicles require fewer mechanical components than conventional drives, efficiency and lightweight construction are taking centre stage for the remaining components in particular. Less weight means lower energy consumption, improved range and reduced CO₂ emissions during operation.

Electric motors have to deliver high torque at low speeds and are often large and heavy as a result. High-speed concepts open up opportunities here: Smaller, lighter motors achieve the same power at significantly higher speeds - provided the gearbox can reduce this efficiently. This is where modern high-speed transmissions come in.

However, as speeds increase, so do the centrifugal forces in the gear - particularly in the area of the tooth root. Current calculation standards do not adequately reflect these stresses. This makes an optimised, weight-reduced design more difficult. At the same time, lightweight construction is a key to reducing CO₂ emissions over the entire vehicle life cycle - by using less material and consuming less energy during operation. Against this backdrop, new, standardised approaches are needed for gears in the high-speed range and new methods for increasing the load-bearing capacity of gears in electric drives. This is where the Light4Speed project comes in.

For electric drives: Designing load-optimised and resource-efficient high-speed gearboxes

About this project

Purpose

The project team is developing new methods for designing gears for high-speed gearboxes in a weight- and load-optimised manner. The aim is to master the growing centrifugal forces at speeds of up to 50,000 revolutions per minute both in terms of design and calculation - and thus enable lighter, resource-saving drive solutions.

The focus is on the tooth root, which is particularly stressed by the superposition of centrifugal forces and the torque required for power transmission. The researchers are pursuing an integrated approach: they are combining lightweight design, material and manufacturing to increase load-bearing capacity and are analysing the influence of centrifugal forces on stress and damage behaviour.

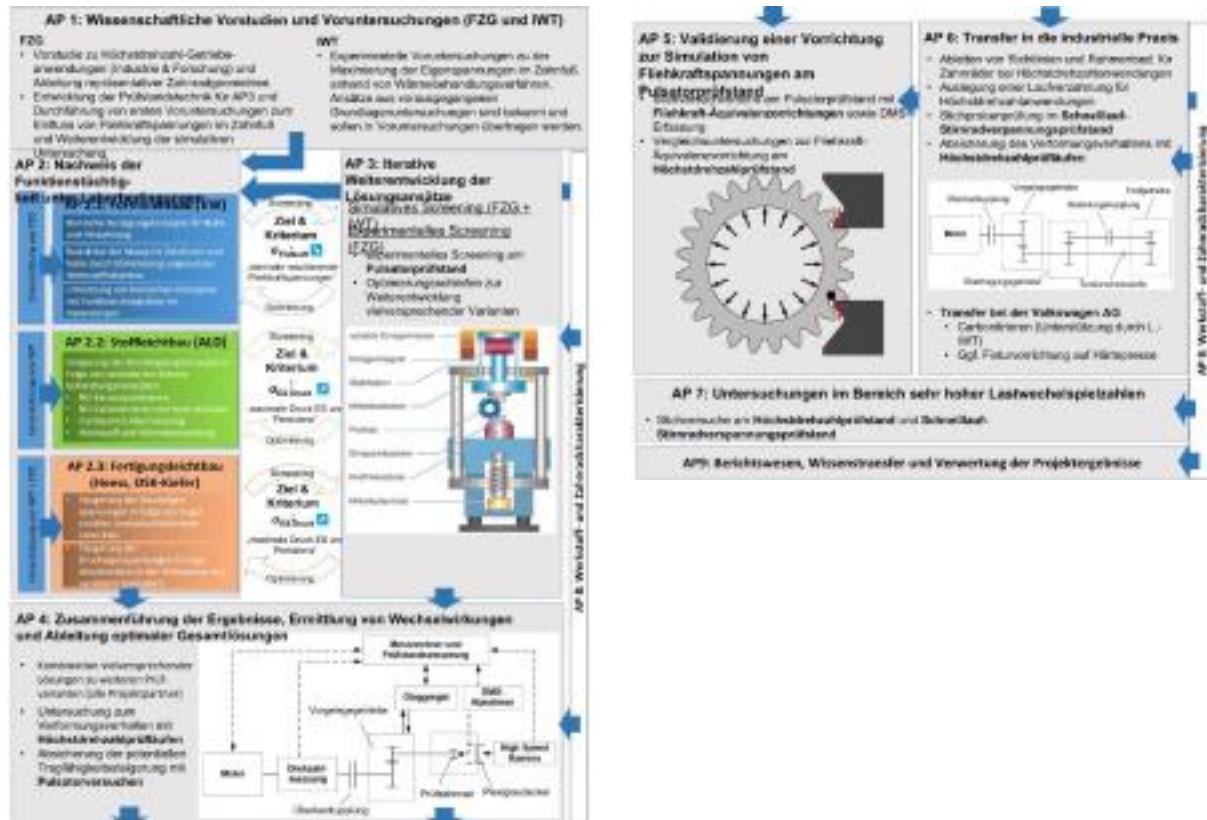
This is not just about new design guidelines. The team will also develop a simplified calculation approach that can be integrated into standards such as ISO 6336 in the future. In addition, reliable test methods are to be developed with which the influence of centrifugal forces can be efficiently evaluated.

This will create a sound basis for the development of innovative transmissions in electromobility. At the same time, the project is making a concrete contribution to reducing CO₂ emissions - for example by saving material by increasing the load-bearing capacity of the gears used in electric transmissions.

For electric drives: Designing load-optimised and resource-efficient high-speed gearboxes

About this project

Procedure


The researchers are investigating how centrifugal forces at very high speeds affect the service life and failure behaviour of gears. To do this, they use experimental test benches and numerical methods such as the finite element method (FEM). This breaks down the component into many elements and thus shows how loads are distributed in the material. The data obtained is used to develop new design models.

At the same time, the researchers are trialling various lightweight construction strategies. In moulded lightweight construction, they specifically design the gear structure - for example with cavities, ribs or bionically inspired shapes - in order to achieve a high load-bearing capacity with minimal use of material. Material lightweight construction uses specially adapted materials and heat treatments to change the structure and residual stresses in the tooth root so that cracks develop more slowly or do not form in the first place. Lightweight manufacturing relies on processes such as optimised shot peening or targeted quenching under preload in order to introduce additional residual compressive stresses.

The project partners test all concepts under realistic conditions, including the so-called "ultra-high cycle fatigue" range, with extremely high load cycles. Finally, they systematically compare the concepts and develop recommendations for industrial practice. The aim is to provide practical and standardised technologies for transmissions in the field of e-mobility.

For electric drives: Designing load-optimised and resource-efficient high-speed gearboxes

About this project

Funding duration:

Funding sign:

03LB3014

Funding amount:

EUR 1.3 million

Final report

Further websites

foerderportal.bund.de/foekat/jsp/SucheAction.do

[actionMode=view&fkz=03LB3014A](http://foerderportal.bund.de/foekat/jsp/SucheAction.do?actionMode=view&fkz=03LB3014A) - Light4Speed in the federal funding catalogue

For electric drives: Designing load-optimised and resource-efficient high-speed gearboxes

Project coordination

Contact:

Mr Prof. Dr.-Ing. Karsten Stahl

+49 089 289-15805

karsten.stahl@tum.de

Organisation:

Technical University of Munich

Boltzmannstraße 15
85748 Garching b. München
Bavaria
Germany

www.mec.ed.tum.de/fzg/startseite/

English (EN){{ Projektpartner }}

Leibniz-Institut für
Werkstofforientierte
Technologien
IWT Bremen

VOLKSWAGEN

AKTIENGESELLSCHAFT

ENGINEERING

alpHEESS The logo for alpHEESS. It consists of the word 'alpHEESS' in a large, red, bold, sans-serif font. To the right of the text is a blue circular logo containing the letters 'OSK'.

For electric drives: Designing load-optimised and resource-efficient high-speed gearboxes

Lightweighting classification	
Offer	Realisation
Products Parts and components, Tools and moulds	✓
Services & consulting Testing and trials, Engineering, Standardisation, Simulation, Technology transfer	✓
Field of technology	
Design & layout Lightweight manufacturing, Lightweight design, Lightweight material construction	✓
Functional integration Material functionalisation	✓
Measuring and testing technology Component and part analysis, Materials analysis	✓
Modelling and simulation Loads & stress, Life-cycle analysis, Optimisation, Materials	✓
Plant construction & automation Others (Drive technology)	✓
<i>Recycling technologies</i>	

For electric drives: Designing load-optimised and resource-efficient high-speed gearboxes

Lightweighting classification

Realisation

Manufacturing process

Additive manufacturing

Coating (surface engineering)

Fibre composite technology

Forming

Joining

Material property alteration

Mechanical treatment, Thermochemical treatment, Thermomechanical treatment, Heat treatment

Primary forming

Processing and separating

Textile technology

Material

Biogenic materials

Cellular materials (foam materials)

Composites

Fibres

Functional materials

Metals

Steel

Plastics

Structural ceramics

(Technical) textiles